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A B S T R A C T   

Alzheimer’s disease is a common neurodegenerative brain disease that affects the elderly population worldwide. 
Its early automatic detection is vital for early intervention and treatment. A common solution is to perform future 
cognitive score prediction based on the baseline brain structural magnetic resonance image (MRI), which can 
directly infer the potential severity of disease. Recently, several studies have modelled disease progression by 
predicting the future brain MRI that can provide visual information of brain changes over time. Nevertheless, no 
studies explore the intra correlation of these two solutions, and it is unknown whether the predicted MRI can 
assist the prediction of cognitive score. Here, instead of independent prediction, we aim to predict disease 
progression in multi-view, i.e., predicting subject-specific changes of cognitive score and MRI volume concur-
rently. To achieve this, we propose an end-to-end integrated framework, where a regression model and a 
generative adversarial network are integrated together and then jointly optimized. Three integration strategies 
are exploited to unify these two models. Moreover, considering that some brain regions, such as hippocampus 
and middle temporal gyrus, could change significantly during the disease progression, a region-of-interest (ROI) 
mask and a ROI loss are introduced into the integrated framework to leverage this anatomical prior knowledge. 
Experimental results on the longitudinal Alzheimer’s Disease Neuroimaging Initiative dataset demonstrated that 
the integrated framework outperformed the independent regression model for cognitive score prediction. And its 
performance can be further improved with the ROI loss for both cognitive score and MRI prediction.   

1. Introduction 

Alzheimer’s disease (AD), the most common cause of dementia, is a 
neurodegenerative brain disease. Patients with AD suffer from pro-
gressive and irreversible deterioration of memory, cognition, and 
behavior until death [1]. In the year 2018, people with dementia is 
approximate to 50 million worldwide, and estimated to be 152 million 
by 2050 [2]. AD not only severely disturbs the normal daily living of 
patients and their families, but also causes heavy social and economic 
burdens [3]. Unfortunately, there is no pharmaceutical or clinical 
treatment available to stop or reverse the disease progression of AD [3]. 
Therefore, tracking AD progression is significantly important for 
enhancing the understanding of AD, monitoring the efficiency of new 
treatments or therapeutic interventions, and especially being beneficial 
for the early diagnosis [4]. 

Cognitive deterioration is a prominent symptom of AD. Various 
neuropsychological tests can be conducted to get the cognitive or clin-
ical scores of subjects, which can reflect their cognitive functioning 
[5,6]. For example, mini mental state examination (MMSE) [7], a test 
including five cognitive areas to assess mental status, has been widely 
used for grading the cognitive state of AD patients [8]. Alzheimer’s 
disease assessment scale cognitive subscale (ADAS-cog) [9], including 
eleven subject-completed tests and observer-based assessments, has 
been employed to measure cognition in patients with mild to moderate 
AD, which is considered as the gold standard for assessing the efficacy of 
antidementia treatments [10]. Those cognitive scores can be obtained 
easily and cheaply in clinical practice, and used as common clinical 
biomarkers for AD diagnosis. To some extent, the changing of cognitive 
score can reveal AD progression [11,12]. Thus, many approaches have 
formulated disease progression as the regression task by predicting the 
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future cognitive score, based on baseline magnetic resonance image 
(MRI) [13–21]. For example, Jiang et al. [17] have calculated brain 
features (e.g., cortical volume and thickness) from structural MRI at 
baseline and then used them to predict future MMSE and ADAS-cog 
scores. Bhagwat et al. [19] have adopted an anatomically partitioned 
artificial neural network to extract features from the hippocampus re-
gion and cortical surface of baseline MRI, and then predict the clinical 
score at one year later. These feature-based prediction methods may 
confront some issues, such as which features should be extracted, how to 
perform feature selection and dimensionality reduction, and which 
regression algorithm to be selected [22]. Deep learning [23] can over-
come these problems and has shown promising performance in the field 
of medical image analysis [24–26]. Lian et al. [27] have proposed an 
end-to-end deep learning model for the joint regression of multiple 
cognitive scores from baseline structural MRI. Yet, it still remains 
challenging to predict future cognitive score automatically and 
precisely. 

Compared with cognitive decline, the brain structural changes 
associated with AD may appear much earlier, which can be detected by 
structural MRI [3,28]. This high-dimensional image carries more com-
plementary, visualized and interpretable information than the cognitive 
score. In clinical diagnosis, medical experts would not make any deci-
sion before checking MRI scan of patient, revealing the significant role of 
MRI in tracing AD progression [29]. Therefore, forecasting future MRI, i. 
e., modeling the disease progression at the image level, is helpful in 
practice. For example, the forecasted image can allow clinicians to 
predict the possible progression speed by measuring the baseline and 
estimated MRI. It also can be shown to patients and their families when 
clinicians are providing advice and reassurance. The visualization of 
possible changes of brain may improve patients’ trust in doctors and 
motivate their behavior, such as cognitive exercise. 

In more recent years, benefit from the boost of generative adversarial 
network (GAN) [30], GAN-based methods have been adopted in various 
tasks, such as image registration, reconstruction, and segmentation [31]. 
Generally, the GAN model consists of a generator and a discriminator. 
They are trained in an adversarial way against each other, i.e., generator 
tries to generate synthetic image that discriminator cannot distinguish it 
from the real one. The adversarial mechanism in GAN can promote 
discriminator to generate more realistic image than conventional 
autoencoder [32]. To model disease progression at the image level, 
several studies have harnessed the GAN model to estimate brain MRI in 
the future [33–37], which can be regarded as an image synthesis task. 
For example, Bowles et al. [33] have modified the Wasserstein GAN with 
the image arithmetic technique in a latent space to directly manipulate 
the MRI of hippocampus, temporal lobe and the lateral ventricles. Ravi 
et al. [34] have trained a set of support vector regressors to capture the 
regional intensity change patterns before training GAN to produce two- 
dimensional MRI slice associated with disease progression. 

However, the aforementioned researches have either focused on the 
cognitive score prediction or MRI image prediction when modelling the 
disease progression, without the consideration of the inherent correla-
tion or relationship between these two views [38–40]. Besides, it is 
unknown that whether these two tasks can promote each other. In this 
study, we introduce a new solution to tackle this problem, with the 
overarching goal of predicting the future cognitive score and 3D MRI at 
the same time. Specifically, an end-to-end integrated framework for 
multi-view prediction of disease progression is proposed, by joint 
learning of the regression and GAN models. In this way, with the direct 
inputting of the whole-brain MRI once only, the integrated framework 
can predict subject-specific future MMSE and ADAS-cog scores and 3D 
MRI simultaneously. It not only accomplishes the main task of cognitive 
score prediction, but also achieves the auxiliary task of MRI prediction, 
which may provide more visualized complementary information, facil-
itating clinical decision-making and further enhancing the understand-
ing of AD progression. 

Obvious brain changes occur in some vulnerable regions, such as the 

hippocampus and entorhinal cortex, which are crucial for the prediction 
of AD disease progression [41]. And clinicians also focus on analyzing 
these brain regions to make the diagnosis. For example, the whole brain 
and hippocampal atrophy rates are sensitive biomarkers of AD pro-
gression, and the atrophy degree of medial temporal structures is a 
diagnostic biomarker for AD [41]. Hence, these regions should be paid 
more attention to. In this study, we introduce a region-of-interest (ROI) 
loss to guide the training of the model. Specifically, based on the 
anatomical prior knowledge of AD, a 3D binary ROI mask that in-
corporates hippocampus, entorhinal cortex, amygdala, and other 
important regions is built [29,41,42]. Then, besides the baseline MRI, 
the ROI mask is also inputted into generator. Finally, the ROI loss, i.e., 
mean square error loss of ROIs, is constructed to guide generator to 
synthesize more realistic 3D MRI, especially in the ROI region. In sum-
mary, the main contributions of this work are three-fold.  

(1) The proposed end-to-end integrated framework unifies the 
regression model and the GAN model together to model AD 
progression in multi-view by predicting the future clinical scores 
and 3D MRI concurrently.  

(2) Three strategies for integrating the regression and GAN models 
are exploited, including the integration in generator, integration 
in discriminator, and integration in parallel with discriminator.  

(3) The ROI loss is proposed to guide the GAN model to generate 
high-quality MRI image and help to improve the prediction per-
formance of the regression model, by leveraging the prior 
knowledge of AD. 

2. Methods 

The overview architecture of the end-to-end integrated framework is 
presented in Fig. 1. The 3D MRI of an individual at the baseline time- 
point (BL) is fed into the generator to predict MRI image at a future 
follow-up. The predicted or the real future MRI is inputted into the 
discriminator to identify its reality. The GAN is trained by the adver-
sarial loss and the mean square error loss, while the region-of-interest- 
attentive generative adversarial network (ROI-GAN) is trained with an 
additional ROI loss (i.e., LROI shown in Fig. 1). It is the mean square error 
between the real and the generated ROI regions, obtained after per-
forming element-wise multiplication with the ROI mask, respectively. 
Moreover, the regression model aims to simultaneously predict MMSE 
and ADAS-cog cores at the future time-point. It could be connected to 
the GAN model in three ways, shown as Reg1, Reg2 and Reg3 in Fig. 1. 
More details are provided in the following subsections. 

2.1. Integrated frameworks for multi-view prediction 

Inspired by [43–46], we propose the end-to-end integrated frame-
work to forecast disease progression of AD in multi-view, i.e., predicting 
the 3D MRI and two cognitive scores simultaneously. We construct the 
regression model (regressor) and the GAN model to forecast two 
cognitive scores and MRI, respectively. In this section, we introduce 
three schemes to integrate the two models. First, we integrate them by 
taking the output features of bottleneck layer of generator as the input 
features of Reg1, named as the integration in generator (GAN_Reg1). 
Second, we integrate them by taking the output features of the last 
convolutional layer of discriminator as the input features of Reg2, named 
as the integration in discriminator (GAN_Reg2). They are feature-based 
integrated strategy, by leveraging the learned feature maps of the 
GAN model. Third, we integrate them directly and sequentially, by 
taking the output image of generator as the input image of Reg3. This is 
an image-based integrated strategy, named as the integration in parallel 
with discriminator (GAN_Reg3). 

2.1.1. Integration in generator 
Cao et al. [43] completed joint hippocampus segmentation and 
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clinical score regression by connecting a regression model to the 
bottleneck layer of a segmentation model. Inspired by [43], to exploit 
the underlying correlation between the two predictions, we connect our 
regression model (Reg1) to the bottleneck layer of the GAN model by 
sharing the encoder (ge1, ge2, …, gb) path. The feature maps from the 
bottleneck layer (gb shown in Fig. 1) of generator are high-order fea-
tures. Features in this latent space can reflect the mapping between the 
baseline image and the ground truth image to some degree. We input 
these features into the first layer of Reg1 and then train the GAN and 
Reg1 models jointly. The GAN loss and the regression loss can be 
formulated as: 

LGAN(G,D) = E[logD(Y) ]+ E[log(1 − D(G(X) ) ]+ αE[‖G(X) − Y‖] (1)  

LReg1(R1) = E[‖R1(gb) − y‖] (2)  

where X ∈ Rd×w×h and Y ∈ Rd×w×h denote the MRI images, at baseline 
and the future time-point, respectively; and α > 0 is a tunable hyper- 
parameter to balance the importance of adversarial loss and mean 
square error (MSE) loss. gb is the bottleneck feature of generator, and y is 
the target score of future MMSE and ADAS-cog. To optimize them 
jointly, the total loss of this integration (LG Reg1) is: 

LG Reg1 = LGAN(G,D) + γLReg1(R1) (3)  

where γ > 0 is a tunable hyper-parameter to balance the losses of GAN 
and Reg1 models. 

2.1.2. Integration in discriminator 
Li et al. [44] appended an auxiliary fully connected network to the 

top of discriminator to predict the age of the face image when per-
forming age progression and regression simultaneously. The fully con-
nected network works as the regression model to predict the age of 
synthetical face image. Inspired by [44], to exploit the underlying 
relationship between the prediction of future MRI and clinical scores, we 
integrate our regression model (Reg2) and GAN model by inputting the 
extracted features (dn as shown in Fig. 1) from the top of discriminator to 
the first layer of Reg2. These representations extracted by the last con-
volutional layer of discriminator contain abundant information to 
distinguish the generated image from the ground truth, and can be 
beneficial for the prediction of future cognitive scores. In this way, the 
regression loss and the discriminator loss work together to extract the 
effective shared features through the gradient back-propagation. The 
total loss function of this integration (LD Reg2) is: 

LD Reg2 = LGAN(G,D) + γLReg2(R2) (4)  

LReg2(R2) = E[‖R2(dn) − y‖] (5)  

where dn denotes the feature extracted by D. 

2.1.3. Integration in parallel with discriminator 
It was proved that adding an independent regressor to the GAN 

model can decrease the entropy of the generated face images [45]. 
Lanfredi et al. [46] proposed a VR-GAN model to visualize the pro-
gression of chronic obstructive pulmonary disease with chest X-rays. The 
introduction of the regression model can characterize the disease 
severity when the GAN model generating X-ray image with the desired 
severity level. Motivated by [45,46], we integrate an independent Reg3 
(shown in Fig. 1) in parallel with discriminator and also followed with 
generator. Different from the goal of discriminator, Reg3 aims to make 
the generator synthesize high-quality image that can be used to predict 
cognitive score as precisely as possible. The quality of the predicted MRI 
image can affect the prediction performance of Reg3 through back- 
propagating the hybrid loss of GAN and Reg3 models. The total loss 
function of this integration (LNew Reg3) is formulated as: 

LNew Reg3 = LGAN(G,D) + γLReg3(R3) (6)  

LReg3(R3) = E[‖R3(G(X) )− y‖ ] (7)  

where G(X) denotes the predicted MRI image. 

2.2. ROI-GAN based integrated framework 

In the fields of natural language processing and computer vision, 
some attention mechanisms [47,48] have been exploited to improve the 
representation of interests. For example, convolutional block attention 
module (CBAM) [47] can tell the model ‘what’ and ‘where’ to attend, by 
emphasizing features along both the channel and spatial dimensions. 
However, learning a reasonably accurate attention map is still chal-
lenging, due to the intrinsic locality of convolution operation. Thus, 
there raises a question: why not directly tell the model what and where 
to focus? 

To answer this question, the ROI-GAN is proposed. Specifically, we 
firstly construct a 3D ROI mask that contains the location, shape and size 
of these important brain regions, using the WFU PickAtlas toolbox [49], 
implemented in Matlab (The MathWorks Inc., MA, USA). The ROI mask 
is a 3D binary matrix with voxels labeled 1 inside and 0 outside. It 

Fig 1. The overview architecture of the proposed end-to-end integrated framework. It integrates the regression model and the region-of-interest-attentive generative 
adversarial network (ROI-GAN) into a unified framework to predict 3D MRI and cognitive scores simultaneously. ROI-GAN consists of the generator (ge1, ge2, …, gd− 1, 
gd) and the discriminator (d1, …, dn). The ROI loss, i.e., LROI is obtained by calculating the mean square error between the real and the generated ROI regions, after 
performing element-wise multiplication between the pre-defined 3D ROI mask and the real and the generated whole brain images, respectively. Three integrated 
strategies of the regression model, i.e., Reg1, Reg2 and Reg3 are shown in the black dash boxes respectively, to predict subject-specific cognitive scores at the future 
time-point. The cognitive scores include the mini-mental state examination score (MMSE) and Alzheimer’s disease assessment scale cognitive subscale (ADAS-cog). 
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contains the hippocampus, para hippocampus gyrus, amygdala, middle 
temporal gyrus, caudate, postcentral gyrus, fusiform gyrus, olfactory 
and thalamus regions, defined according to the automatic anatomical 
labeling brain atlas [50]. Secondly, we construct a specific ROI loss (i.e., 
LROI shown in Fig. 1), computed as the mean square error between the 
real and the generated ROI regions, formulating as: 

LROI(G) = E[||G(X) ⊗ Xm − Y ⊗ Xm | | ] (8)  

where Xm ∈ Rd×w×h is the ROI mask, and ⊗ represents the element-wise 
multiplication. In this way, the ROI mask is merged into the GAN model 
and then guide it to synthesize more realistic brain image. 

Furthermore, we also integrate the ROI-GAN model with the 
regression model to improve the overall performance of the end-to-end 
integrated framework. Thus, the hybrid loss of the ROI-GAN based in-
tegrated framework is: 

min
G,R
max
D

(
LGAN(G,D)+ βLROI(G)+ γLReg(R)

)
(9)  

where β > 0 and γ > 0 are the balance hyper-parameters, and LReg(R) is 
the regression loss that could be LReg1(R1), LReg2(R2) or LReg3(R3), as 
described in Eqs. (2), (5) and (7). 

2.3. Network architectures 

As shown in Fig. 2, the framework includes a GAN model and a 
regression model. The network architectures are designed based on 
previous related studies [33–38] and our experiments, with the 
consideration of image size, sample size, and task complexity. The GAN 
model constitutes the U-net [51] like generator and the CNN-based 
discriminator. In the encoding path of generator, five convolutional 
blocks are adopted, shown as ge in Fig. 1. Each block contains a con-
volutional layer, a leaky ReLu layer and a batch normalization layer 
[52]. The kernel size, stride and feature dimensions of the first four 
convolutional layers are (4, 4, 4) [53], (2, 2, 2) and (64, 128, 256, 512), 
and the kernel size of the last convolutional layer is (5, 6, 5). Corre-
spondingly, in the decoding path of generator, five deconvolutional 
blocks are used, shown as gd in Fig. 1. Each block contains a deconvo-
lutional layer, a batch normalization layer and a leaky ReLu layer. The 
devolution of the first deconvolutional layer is (5, 6, 5), and the stride 
and feature dimension of the last four deconvolutional block are (2, 2, 2) 
and (512, 256, 128, 64). The feature maps from the encoding process are 
copied and then concatenated with the that in the decoding process via 
skip connection, shown by the blue dash arrows in Fig. 1. Then, the 
output of U-net is fed into a convolutional layer with one 1 × 1 × 1 
spatial filter by a stride of 1. Discriminator receives the generated or the 
real images and determines whether they are real or fake. It contains 
four convolutional layers and leaky ReLu layers, and two fully connected 

layers, without using batch normalization layer like [54]. The feature 
dimensions of each convolutional blocks are 32, 64, 128 and 256. The 
output nodes of fully connected layers are 1000 and 1, respectively. 
Then, a sigmoid function is adopted to transform the output of the final 
layer to the [0, 1] range value, indicating the probability of the input 
image being considered as real or fake. 

The regression model connects to the GAN model by integrating 
them in generator, in discriminator and in parallel with discriminator. 
Since the first two integrations are feature-based strategies, their ar-
chitectures are identical, shown as Reg1 and Reg2 in Fig. 1. We experi-
mentally set four fully connected layers, with the node number of 1000, 
100, 10 and 1, in the regression model for predicting each cognitive 
score. The last integration is the image-based strategy, and its archi-
tecture is similar to that of discriminator, shown as Reg3 in Fig. 1, 
excepting for the difference in the fully connected layers. 

2.4. Baseline methods 

Two deep-learning based regression models are built to accomplish 
the standalone prediction of clinical score. One is Reg1 and the other is 
Reg3, as shown in Fig. 1. Most of their architectures are similar, except 
for the feature dimension of Reg1 is twice that of Reg3. Notably, we do 
not construct Reg2 as the baseline model, because of its inputting fea-
tures should be extracted by the discriminator when distinguishing the 
generated and real images and its architecture is similar to Reg3. The 
baseline MRI and the future MRI are respectively fed into and then used 
to train the baseline regression models of Reg1 and Reg3. 

In addition, two baseline GAN models are constructed to predict the 
future 3D MRI image independently. One is GAN model that has the 
similar generator and discriminator architectures as shown in Fig. 1, 
trained without using the ROI loss. The other is CBAM-GAN that embeds 
four and two CBAM modules into the generator and the discriminator of 
the above GAN model. As described above, CBAM [47] is a commonly 
used learnable attention mechanisms, which can sequentially infer 
attention maps along channel and spatial dimensions and then focus on 
more important regions. 

3. Experiment 

3.1. Subject collection 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.loni. 
usc.edu) is a longitudinal multicenter dataset. It aims to develop clinical, 
imaging, genetic, and biochemical biomarkers for the early detection 
and disease progression tracking of AD. In this study, we selected 210 
subjects with complete 3T MRI data and clinical scores at BL, at the first 
time-point (Year 1) and the second time-point (Year 4) from the ADNI- 
GO and ADNI-2 projects. Please note that the data was incomplete at the 

Fig. 2. Performance comparison of cognitive score prediction with different frameworks in terms of nMAE (a) and nRMSE (b). BL Reg1 refers to the clinical score 
prediction using Reg1 based on baseline MRI. Yx Reg1 denotes the clinical score prediction using Reg1 based on the real MRI image at two future follow-ups, i.e., year 
1 (Y1) or year 4 (Y4). GAN Reg1 and ROI-GAN Reg1 represent the clinical score prediction using the GAN and ROI-GAN based integrated frameworks. 
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two and three years later from the baseline (205 subjects at Year 2 and 
33 subjects at Year 3), so we did not consider these two time-points in 
this study. The demographic information of these 210 subjects is shown 
in Table 1. 

3.2. Data preparation 

Image preprocessing, such as brain extraction, normalization and 
registration, was performed on the raw MRI data to obtain the brain MRI 
with the size of 180 × 192 × 180 [35]. Then, to reduce computation cost 
for GPU, down-sampling was performed to get the image with size of 
90× 96× 90. Furthermore, image augmentation [55] (e.g., rotation and 
shift) was performed on the training dataset. All of the clinical scores 
were also min–max normalized. 

3.3. Implementation details 

All experiments were implemented using the TensorFlow library, 
which was carried out on a NVIDIA Titan Xp 12 GB GPU. The subjects 
were randomly split into the training, validation and test datasets 
(3:1:1). The integrated framework was trained using the Adam opti-
mizer with an exponential decay rate for the first moment of 0.5 and the 
mini-batch size of 6. The learning rate of the generator, discriminator 
and regressor were 1e− 4, 1e− 5, 1e− 5, respectively. The hyperparameters 
were experimentally set to α = 100, β = 300 and γ = 1. The number of 
training epochs was set to 200, and the training would stop if the pre-
diction performance of the validation dataset was not improved in 10 
epochs. 

3.4. Evaluation 

The end-to-end integrated framework can forecast the future 3D 
brain MRI and cognitive scores simultaneously. We used the root mean 
square error (RMSE) [17] to evaluate the prediction performance of 
each cognitive score, formulated as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖y − ŷ‖2
2

n

√

(10)  

where ŷ and y represent the predicted cognitive score (ADAS-cog or 
MMSE) and its corresponding ground truth, and n is the total number of 
subjects. Moreover, to show the overall performance of two scores, we 
compute the normalized mean index (nMI) by averaging the normalized 
mean absolute error (nMAE) and normalized RMSE (nRMSE). nMAE and 
nRMSE are computed after concatenating the normalized ADAS-cog and 
MMSE scores into one vector. 

As for the image prediction, we adopted the mean squared error 
(MSE), the peak signal-to-noise ratio (PSNR), along with the structural 
similarity (SSIM) to assess the quality of the generated image [56]. 
These metrics can be calculated by: 

MSE =
1
N
‖Y − Ŷ‖2 (11)  

PSNR = 10 × log10
MAXY2

MSE
(12)  

SSIM =
(2μYμŶ + C1)(2δY Ŷ + C2)

(μ2
Y + μ2

Ŷ
+ C1)(δ2

Y + δ2
Ŷ
+ C2)

(13)  

where Y ∈ Rd×w×h and Ŷ ∈ Rd×w×h are the real and the generated im-
ages, andN = d× w× his the total voxels in the volumetric MRI image. 
Moreover, paired student’s t-test was utilized to show the performance 
difference between the GAN and ROI-GAN based models. 

Apart from these quantitative measurements, we also qualitatively 
visualized the predicted MRI and the corresponding error map to reveal 
the difference between the predicted image and the ground truth. The 
error map is defined as: 

error map =
{

0, |Ŷ − Y|. < threshold
1, |Ŷ − Y| ≥ threshold

(14)  

where the threshold is a predefined value. If the voxel difference is less 
than the threshold, the error of this voxel is set to 0, otherwise set to 1. 

4. Results 

4.1. Better performance of clinical score prediction achieved with future 
MRI than baseline MRI 

Given the baseline MRI, the quantitative performance of the two 
baseline regression models, Reg1 and Reg3, for predicting the future 
MMSE and ADAS-cog scores was summarized in Table 2. We can observe 
that the Reg3 model achieved better overall prediction performance than 
Reg1, and both models can yield better prediction performance based on 
the future MRI than that based on the baseline MRI image. For example, 
compared with BL Reg1, obvious improvements were achieved by Y1 
Reg1 and Y4 Reg1, e.g., the nMI values were decreased by 13.11% and 

10.26%, respectively. These results demonstrated that the future MRI 
image can improve the prediction performance of the regression models. 
Thus, the prediction of the future MRI is valuable. 

4.2. Better performance of MRI prediction achieved with ROI-GAN 

To validate the effectiveness of the proposed ROI loss, three GAN 
models were constructed to predict the future 3D MRI image, including 
the GAN, CBAM-GAN and ROI-GAN models. The quantitative perfor-
mance of these models was summarized in Table 3. It can be observed 
that our proposed ROI-GAN model outperformed the other two models 
on both prediction targets. For instance, compared with GAN for the task 
of predicting MRI image at Y4 (BL → Y4), our ROI-GAN model led to 
8.79%, 0.05% and 1.12% improvements in terms of MSE, SSIM and 
PSNR for the ROI regions, and yielded 9.12%, 0.41% and 1.49% 

Table 1 
Demographics of subjects at three time-points.  

Time-point NC/MCI/AD AGE ADAS-cog MMSE 

Baseline 76/134/0 71.32 ± 7.19 7.81 ± 3.87 28.47 ± 1.60 
Year 1 81/119/10 72.34 ± 7.16 7.29 ± 4.51 28.10 ± 2.03 
Year 4 86/87/37 75.43 ± 7.15 9.38 ± 7.68 27.06 ± 3.83 

Notes: NC/MCI/AD means normal control, mild cognitive impairment or Alz-
heimer’s disease patient; MMSE and ADAS-cog denote mini-mental state ex-
amination score and Alzheimer’s disease assessment scale cognitive subscale. 
The data is presented in a mean ± standard deviation format. 

Table 2 
The results of clinical score prediction based on the real MRI images at two time- 
points.  

Target Framework RMSE ↓ 
ADAS 

RMSE ↓ 
MMSE 

nMAE ↓  nRMSE ↓  nMI ↓  

Year 1 BL_Reg1  4.1370  2.4206  0.1662  0.2048  0.1855 
BL_Reg3  3.9393  2.0722  0.1408  0.1815  0.1612 
Y1_Reg1  3.5953  2.1850  0.1452  0.1828  0.1640 
Y1_Reg3  3.6831  2.0159  0.1297  0.1742  0.1520 

Year 4 BL_Reg1  6.3610  4.4189  0.1427  0.1925  0.1676 
BL_Reg3  7.2345  3.6192  0.1151  0.1809  0.1480 
Y4_Reg1  5.6965  4.1158  0.1269  0.1770  0.1520 
Y4_Reg3  6.3037  3.2978  0.1087  0.1613  0.1350 

Notes: BL/Y1_Reg1/Reg3 denotes inputting the baseline MRI (BL) or real MRI at 
one year (Y1) and four years (Y4) later into Reg1 or Reg3 model. Boldface marks 
the best performance in the two tasks. ↓ means the lower the better. 
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improvements for the whole brain MRI. Compared with CBAM-GAN for 
the task of predicting MRI image at Y1 (BL → Y1), our ROI-GAN model 
led to 2.90%, 0.02% and 0.19% improvements in terms of MSE, SSIM 
and PSNR for the ROI regions, and yielded 3.58%, 0.79% and 0.36% 
improvements for the whole brain MRI. These results could indicate that 
the introduction of the knowledge-based prior can improve the perfor-
mance of MRI image prediction. 

4.3. Prediction performance of clinical score improved with joint 
prediction of future MRI 

In this scenario, to assess whether the future MRI predicted by the 
integrated framework can improve the prediction performance of clin-
ical score, GAN_ Reg1 and GAN Reg3 were constructed. Given 3D MRI of 
an individual at baseline, we predicted its future MMSE and ADAS-Cog 
scores and MRI concurrently. Their performance at the two follow-ups 
was listed in Table 4 and Fig. 2. Compared with BL_ Reg1 and BL 
Reg3 that fed baseline MRI into the regression model, the features 

learned by the generator (GAN_ Reg1) and its predicted future MRI (GAN 
Reg3) can improve the performance of clinical score prediction. Take 

the target of BL → Y1 for example, the nMI reduced from 0.1855 to 
0.1574, with significant improvement. 

Next, to further assess the benefit of ROI loss for the integrated 
framework, ROI-GAN_ Reg1, ROI-GAN Reg2 and ROI-GAN Reg3 were 
also explored. Their performance was also shown in Table 4 and Fig. 2. 
Besides, we also listed their qualitative comparison for the image pre-
diction in ROI regions in Table 5. These results demonstrated that the 
harness of ROI loss can improve the overall prediction performance of 

Table 3 
Performance of GAN models for 3D MRI prediction at two future time-points.  

Target GAN Whole brain MRI ROI regions 

MSE (×10− 3)↓  SSIM ↑  PSNR ↑  MSE (×10− 4)↓  SSIM ↑  PSNR ↑  

BL → Y1 GAN 2.8353 ± 2.0624 0.9337 ± 0.0499 26.4983 ± 2.9647 3.5634 ± 2.7037 0.9928 ± 0.0055 35.6395 ± 3.2380 
CBAM-GAN 2.8666 ± 2.1193 0.9272 ± 0.0539* 26.5037 ± 3.0541 3.5968 ± 2.7511 0.9927 ± 0.0057 35.6345 ± 3.178 
ROI-GAN 2.7676 ± 2.0156* 0.9345 ± 0.0492** 26.6004 ± 2.9572* 3.4955 ± 2.6327 0.9929 ± 0.0054 35.7011 ± 3.1454 

BL → Y4 GAN 3.0011 ± 1.8161 0.9291 ± 0.0459 25.8517 ± 2.2417 3.8308 ± 2.4867 0.9924 ± 0.0051 34.8568 ± 2.3349 
CBAM-GAN 2.8390 ± 1.9149* 0.9311 ± 0.0473** 26.2106 ± 2.4255** 3.6027 ± 2.6210* 0.9928 ± 0.0054* 35.2341 ± 2.4690** 
ROI-GAN 2.7502 ± 1.7680** 0.9329 ± 0.0460*** 26.2372 ± 2.2078** 3.5213 ± 2.4535** 0.9929 ± 0.0052* 35.2456 ± 2.3269* 

Notes: BL → Y1 and BL → Y4 denote the tasks of MRI image prediction at year 1 (Y1) and year 4 (Y4), given the MRI image at baseline (BL). Paired student’s t-test (*p < 
0.1, **p < 0.01 and ***p < 0.001) is performed between the image prediction results of GAN and CBAM/ROI-GAN based frameworks. Boldface marks the best 
performance in the two tasks. ↑ means the higher the better, while ↓ means the lower the better. 

Table 4 
Performance of the proposed integrated frameworks for joint prediction of two cognitive scores and MRI.  

Target Framework RMSE ↓ 
ADAS 

RMSE ↓ 
MMSE 

nMI ↓  MSE (×10− 3)↓  SSIM ↑  PSNR ↑  

BL → Y1 BL_Reg1  4.1370  2.4206  0.1855 – – – 
GAN_Reg1  3.6309  2.5539  0.1781 3.4828 ± 2.6250 0.9270 ± 0.0528 25.6523 ± 3.0474 
ROI-GAN_Reg1  3.4358  2.0296  0.1574 2.8686 ± 0.0021*** 0.9333 ± 0.0500*** 26.4419 ± 2.9559** 
GAN_Reg2  3.7375  2.1378  0.1581 2.8384 ± 2.0650 0.9338 ± 0.0497 26.4885 ± 2.9535 
ROI-GAN_Reg2  3.7844  2.1478  0.1571 2.7944 ± 2.0001* 0.9341 ± 0.0487* 26.5223 ± 2.9005 
BL_Reg3  3.9393  2.0722  0.1612 – – – 
GAN_Reg3  3.8569  2.2490  0.1639 2.8577 ± 2.0956 0.9332 ± 0.0506 26.4788 ± 2.9854 
ROI-GAN_Reg3  3.7005  2.1656  0.1580 2.8376 ± 2.0005 0.9343 ± 0.0495*** 26.4901 ± 2.9537 

BL → Y4 BL_Reg1  6.3610  4.4189  0.1676 – – – 
GAN_Reg1  6.4687  3.6057  0.1506 3.0899 ± 1.8778 0.9287 ± 0.0466 25.6974 ± 2.1820 
ROI-GAN_Reg1  6.2578  3.6277  0.1398 2.9683 ± 1.9951 0.9321 ± 0.0480** 26.0032 ± 2.3880* 
GAN_Reg2  7.0679  3.5008  0.1422 3.1354 ± 2.0406 0.9303 ± 0.0470 25.7653 ± 2.4195 
ROI-GAN_Reg2  6.5794  3.4301  0.1363 2.8672 ± 1.8365 0.9326 ± 0.0467* 26.1184 ± 2.3810 
BL_Reg3  7.2345  3.6192  0.1480 – – – 
GAN_Reg3  7.0324  3.5134  0.1433 3.0127 ± 1.9404 0.9269 ± 0.0488 25.9058 ± 2.3672 
ROI-GAN_Reg3  7.2432  3.3225  0.1418 2.8245 ± 1.8442*** 0.9299 ± 0.0470*** 26.1975 ± 2.3820** 

Notes: BL → Y1 denotes the task of future cognitive score and/or MRI image prediction at year 1 (Y1), given the MRI image at baseline (BL). BL → Y4 denotes the 
prediction at year 4 (Y4). BL Reg1 represents the cognitive score prediction utilizing Reg1 model and taking the MRI image at BL as input. Y4 Reg3 represents the 
cognitive score prediction utilizing Reg3 model and taking the real MRI image at Y4 as the input. Paired student’s t-test (*p < 0.1, **p < 0.01 and ***p < 0.001) is 
performed between the results of GAN and ROI-GAN based frameworks. Boldface marks the best performance achieved by different frameworks for the two tasks. ↑ 
means the higher the better, while ↓ means the lower the better. 

Table 5 
Performance comparison of GAN and ROI-GAN based integrated frameworks for 
MRI prediction in ROI regions.  

Target Framework MSE (10− 4)↓  SSIM ↑  PSNR ↑  

BL → 
Y1 

GAN_Reg1 
ROI- 
GAN_Reg1 

4.4772 ±
3.4702 
3.6020 ± 
2.7188*** 

0.9915 ±
0.0060 
0.9928 ± 
0.0056*** 

34.6853 ±
3.2567 
35.6999 ± 
3.0978** 

GAN_Reg2 
ROI- 
GAN_Reg2 

3.5711 ±
2.7107 
3.5255 ± 
2.6201* 

0.9928 ±
0.0055 
0.9929 ± 
0.0054* 

35.6277 ±
3.1721 
35.6293 ± 
3.0875 

GAN_Reg3 
ROI- 
GAN_Reg3 

3.5920 ±
2.7351 
3.5723 ± 
2.7126 

0.9928 ±
0.0056 
0.9929 ± 
0.0055* 

35.6107 ±
3.1855 
35.6244 ± 
3.1668 

BL → 
Y4 

GAN_Reg1 
ROI- 
GAN_Reg1 

3.9617 ±
2.5981 
3.7426 ± 
2.6870* 

0.9920 ±
0.0054 
0.9926 ± 
0.0055** 

34.6741 ±
2.2591 
35.0557 ± 
2.4587* 

GAN_Reg2 
ROI- 
GAN_Reg2 

3.9050 ±
2.7570 
3.6802 ± 
2.5320 

0.9924 ±
0.0054 
0.9925 ± 
0.0053 

34.9012 ±
2.5364 
35.1001 ± 
2.4640 

GAN_Reg3 
ROI- 
GAN_Reg3 

3.8280 ±
2.6861 
3.5798 ± 
2.5382*** 

0.9923 ±
0.0055 
0.9928 ± 
0.0053*** 

34.9631 ±
2.5052 
35.2533 ± 
2.4928***  
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both clinical score and 3D MRI. 

4.4. Visualization of the predicted MRI 

In addition, we qualitatively evaluated the performance of our pro-
posed GAN and ROI-GAN based integrated frameworks. Here, we took 
GAN Reg1 and ROI-GAN Reg1 as the example. The real and predicted 
MRI images of a subject (PTID: 019_S_4293) were displayed in Fig. 3. 
The MRI images in the first four columns seemed similar, and their 
differences look so trivial. Therefore, we also visualized the error maps 
between the real image and the predicted image at Y1 and Y4 in the last 
four columns of Fig. 3, respectively. These error maps illustrated that the 
quality of MRI predicted by the ROI-GAN based integrated framework 
was better than that predicted by the GAN based integrated framework, 
especially for the regions marked in red ellipse. 

4.5. Performance compared with previous methods 

This study has proposed a multi-task learning method to predict 
disease progression in multi-view, with the main prediction task of 
future two cognitive scores and the auxiliary prediction task of future 3D 
MRI. Thus, we mainly compared our methods with other traditional 
machine learning based [17,20] and artificial neural network based [19] 
approaches for predicting future scores. Comparison of the proposed 
integrated framework with other related works for predicting MMSE and 
ADAS-cog scores at one years later based on baseline MRI was shown in 
Table 6. 

5. Discussion 

In this study, we found that the prediction performance of future 
cognitive score achieved with future brain MRI was better than that with 
baseline MRI. To leverage the correlation between future brain MRI and 
future cognitive score, we presented an end-to-end integrated frame-
work that can concurrently predict subject-specific cognitive score and 
future brain MRI. Experimental results on ANDI dataset showed (1) the 
integrated framework outperformed the independent regression model 
for cognitive score prediction; and (2) the integrated framework with 
ROI loss yielded better performance for both cognitive score and MRI 

prediction. 
Cognitive score is common assessment to reflect the potential 

severity of AD, and its changing can model AD progression. Therefore, 
conventional studies [13–20,57] formulated the image-based AD pro-
gression as the regression task by predicting future cognitive scores. 
Recently, some studies [33–37] were formulated it as the image syn-
thesis task by predicting future MRIs. Different from previous works that 
estimated the cognitive score or MRI independently, we attempted to 
construct an end-to-end integrated framework that can concurrently 
predict cognitive score and MRI, providing multi-view information for 
disease progression in one-pass way. Considering the heterogeneity of 
these tasks, how to integrate them together is challenging. Three stra-
tegies were exploited in [43–46] to unify two tasks for several applica-
tions, such as hippocampus segmentation [43], face image progression 
[44], and chronic obstructive pulmonary disease progression on chest X- 
rays [46]. However, which strategy is appropriate for our application is 
still unknown. In this work, we connected the regression and GAN 
models in three ways, and found that GAN_ Reg2 performed better than 
GAN_ Reg1 and GAN_ Reg3. The reasons may be as follows. In GAN_ 
Reg1, the shared feature may mainly concentrate on predicting the 
future MRI. In GAN_ Reg3, the regression and GAN models maybe more 
concerned with their own primary targets. Whereas, in GAN_ Reg2, the 
regression model shared the convolutional layers with the discriminator. 
Thus, the feature learned from the future MRI not only can be used to 
distinguish the predicted and real MRI, but also can facilitate the pre-
diction of the cognitive scores. Therefore, we suggested that, in the 
longitudinal analysis, GAN_ Reg2 may be more appropriate when both 
the regression and GAN models concentrate on the prediction of related 
tasks. Moreover, we innovatively incorporated expert knowledge into 

Fig. 3. Qualitive comparison of 3D MRI from the axial, coronal and sagittal views. The first and second columns show the real MRI images at baseline (BL) and one 
year later (Y1). The third and fourth columns are the MRI images predicted (shown as Y1_GAN and Y1_ROI-GAN) by the two integrated frameworks (GAN Reg1 and 
ROI-GAN Reg1). The last four columns are the error maps with the threshold of 0.06 between the predicted MRI images and the corresponding real MRI images at Y1 
and Y4. 

Table 6 
Comparison of the proposed integrated framework with other related works for 
predicting MMSE and ADAS-cog scores at one years later based on baseline MRI.  

Method Subjects Result (RMSE) 

CSL [17] 130 AD, 295 MCI, 197 NC MMSE 3.0705 ADAS-cog 6.0798 
cFSGL [20] 133 AD, 304 MCI, 188 NC MMSE 3.184ADAS-cog 5.678 
APANN [19] 145 AD, 326 MCI, 198 NC MMSE & ADAS-cog 7.10 
SMTL [13] 91 AD, 202 MCI, 152 NC MMSE 2.48 ADAS-cog 4.91 
Ours 76 MCI, 134 NC MMSE 2.8040 ADAS-cog 3.4358  
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our integrated framework by adding a region-of-interest (ROI) mask and 
the corresponding ROI loss, which can guide the integrated framework 
focusing on the specific regions of brain to improve its learning 
capability. 

Our current work has some limitations. First, the MRI image pre-
dicted by the integrated framework was inferior to that achieved by the 
independent GAN model. In this study, we experimentally set the 
network architecture for regression task and balanced the heterologous 
tasks in a hard way, which could lead to a scenario where one task had a 
dominant influence in the integrated framework, as shown in supple-
mentary Tables S1 and S2. It may be better to automatically learn the 
optimal weights for different tasks when training. Some task-balancing 
techniques [58] or training strategies, such as dynamic weight average 
[59] and multi-phase training [60], may be beneficial for our frame-
work. Second, our framework was validated with one dataset, and it can 
be extended to other longitudinal cohorts. Last but not the least, the 
opinion of some expert radiologists on our predicted MRI image should 
be consulted to promote its clinical application. 

6. Conclusion 

In this paper, we proposed an end-to-end integrated framework to 
forecast AD progression in multi-view, with the main task of cognitive 
score prediction and the auxiliary task of 3D MRI prediction. In this way, 
not only the potential disease severity of an individual can be predicted, 
but also the future informative MRI can be visualized in voxel-wise. 
Specifically, we integrated the regression and GAN models together 
and then trained them jointly. In addition, to leverage prior expert 
knowledge of disease progression, the 3D ROI mask and ROI loss were 
introduced into the integrated framework. Our experiments on the ADNI 
dataset demonstrated that the predicted MRI can significantly improve 
the prediction performance of the cognitive score, and ROI loss can 
further improve the prediction performance of both MRI prediction and 
cognitive scores. 
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